Устройство.

Основными элементами теплового насоса являются соединенные трубопроводом испаритель, компрессор, конденсатор и регулятор потока- дроссель, детандер или вихревую трубу. Схематично тепловой насос можно представить в виде системы из трех замкнутых контуров: в первом, внешнем, циркулирует теплоотдатчик (теплоноситель, собирающий теплоту окружающей среды), во втором — вещество, которое испаряется, отбирая теплоту теплоотдатчика, и конденсируется, отдавая теплоту теплоприемнику, в третьем — теплоприемник (вода в системах отопления и горячего водоснабжения здания).

Рабочий цикл.

Жидкий хладагент продавливается через дроссель, его давление падает, и он поступает в испаритель, где вскипает, отбирая теплоту, поставляемую коллектором из окружающей среды. Далее газ, в который превратился хладагент, всасывается в компрессор, сжимается и, нагретый, выталкивается в конденсатор. Конденсатор является теплоотдающим узлом теплонасоса: здесь теплота принимается водой в системе отопительного контура. При этом газ охлаждается и конденсируется, чтобы вновь подвергнуться разряжению в расширительном вентиле и вернуться в испаритель. После этого рабочий цикл начинается сначала.

Эффективность

В процессе работы компрессор затрачивает электроэнергию. На каждый затраченный киловатт-час электроэнергии тепловой насос вырабатывает 2,5-5 киловатт-часов тепловой энергии.[источник не указан 83 дня] Соотношение вырабатываемой тепловой энергии и потребляемой электрической называется коэффициентом трансформации (или коэффициентом преобразования теплоты) и служит показателем эффективности теплового насоса. Эта величина зависит от разности уровня температур в испарителе и конденсаторе: чем больше разность, тем меньше эта величина.
По этой причине тепловой насос должен использовать по возможности большее количество источника низкопотенциального тепла, не стремясь добиться его сильного охлаждения. В самом деле, при этом растет эффективность теплового насоса, поскольку при слабом охлаждении источника тепла не происходит значительного роста разницы температур. По этой причине тепловые насосы делают так, чтобы масса низкотемпературного источника тепла была значительно большей, чем нагреваемая масса.
Отличие теплового насоса от топливных источников тепла состоит в том, что для работы, кроме энергии для компрессора, ему нужен также источник низкопотенциального тепла, в то время как в традиционных источниках тепла вырабатываемое тепло зависит исключительно от теплотворной способности топлива.

Условный КПД тепловых насосов

Тепловой насос способен, используя высокопотенциальные источники энергии, «накачать» в помещение (в процентах от затраченной) от 200 % до 600 %[3] низкопотенциальной тепловой энергии. В этом нет нарушения закона сохранения энергии, так как при этом охлаждается окружающая среда.
Теоретически применение тепловых насосов для обогрева помещений эффективнее газовых котлов. Современные парогазотурбинные установки на электростанциях имеют КПД, незначительно меньший КПД газовых котлов. В результате при переходе электроэнергетики на современное оборудование и при применении тепловых насосов можно получить экономию газа до 3-5 раз в сравнении с газовыми котлами.